Stability of topologically invariant order parameters at finite temperature
نویسنده
چکیده
Topological entanglement entropy is a topological invariant which can detect topological order of quantum many-body ground state. We assume an existence of such order parameter at finite temperature which is invariant under smooth deformation of the subsystems, and study its stability under hamiltonian perturbation. We apply this assumption to a Gibbs state of hamiltonian which satisfies so called ‘strong commuting’ condition, which we shall define in the paper. Interesting models in this category include local hamiltonian models based on quantum error correcting code. We prove a stability of such topologically invariant order parameter against arbitrary perturbation which can be expressed as a sum of geometrically local bounded-norm terms. The first order correction against such perturbation vanishes in the thermodynamic limit.
منابع مشابه
TOPOLOGICALLY STATIONARY LOCALLY COMPACT SEMIGROUP AND AMENABILITY
In this paper, we investigate the concept of topological stationary for locally compact semigroups. In [4], T. Mitchell proved that a semigroup S is right stationary if and only if m(S) has a left Invariant mean. In this case, the set of values ?(f) where ? runs over all left invariant means on m(S) coincides with the set of constants in the weak* closed convex hull of right translates of f. Th...
متن کاملDynamic Stability of Moderately Thick Composite Laminated Skew Plates using Finite Strip Method
The dynamic instability regions of composite laminated skew flat plates subjected to uniform in-plane axial end-loading are investigated. The in-plane loading is assumed as a combination of a time-invariant component and a harmonic time-varying component uniformly distributed along two opposite panel ends’ width. In case of some loading frequency-amplitude pair-conditions, the model is subjecte...
متن کاملCharacterizations of amenable hypergroups
Let $K$ be a locally compact hypergroup with left Haar measure and let $L^1(K)$ be the complex Lebesgue space associated with it. Let $L^infty(K)$ be the dual of $L^1(K)$. The purpose of this paper is to present some necessary and sufficient conditions for $L^infty(K)^*$ to have a topologically left invariant mean. Some characterizations of amenable hypergroups are given.
متن کاملCharge Screening and Confinement in Hot 3 - D QED
We examine the possibility of a confinement-deconfinement phase transition at finite temperature in both parity invariant and topologically massive three-dimensional quantum electrodynamics. We review an argument showing that the Abelian version of the Polyakov loop operator is an order parameter for confinement, even in the presence of dynamical electrons. We show that, in the parity invariant...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011